Absorptive concrete noise protection barriers
RUCONBAR
RUCONBAR is a highly absorptive environmentally friendly concrete noise barrier.

Its absorbing layer is made of recycled waste tyres and concrete. In its nutshell, it is a concrete based solution composed of an absorbing and a bearing layer. By incorporating in its absorptive layer 40% of rubber granules recycled from old automobile tyres, an innovative product has been created, which is a novel solution in the sphere of noise protection, absolutely unique on the market.

RUCONBAR concept is an economical, easy to implement, and environmentally sound noise protection solution.
EUROPE-WIDE RECOGNITION

 RUCONBAR noise barriers have been developed in the scope of the RUCONBAR PROJECT, which has been recognized and co-funded by the CIP Eco-Innovation Initiative, under the umbrella of the Executive Agency for Competitiveness and Innovation (EACI).

AWARDS AND ACKNOWLEDGMENTS

 RUCONBAR is the holder of Green Mark – Sign of Excellence label, representing a sustainable product and technology. The innovativeness of the product has also been recognized and awarded by the Association for Energetics of the City of Zagreb where RUCONBAR received the GREENOvation award for the best product of Croatia's green economy for 2011. In addition, RUCONBAR has been awarded the ARCA Prix at the International Innovation Exhibition – ARCA 2012.
Environmental benefits

LIFE-CYCLE ANALYSIS FLOWCHART

1. materials acquisition
2. RUCONBAR manufacture
3. RUCONBAR placement & use
4. RUCONBAR recycling

www.ruconbar.com WASTING TYRES FOR A PLEASANT ENVIRONMENT
For orientation, 46.4 t of recycled rubber granules, obtained by recycling 7,800 waste car tyres, can be used for manufacturing 1 kilometre of noise barriers 3 m in height (3,000 m² of barriers).

- 31% reduction in GHG emissions compared to similar solutions available on the market
- Reduced consumption of non-renewable resources (gravel or crushed stones, natural clay and tree felling)
- Protection of natural environment against uncontrolled clay excavation and tree felling practices
- Recycling end-of-life car tyres
Sound-absorbing

1. Reinforced concrete foundation
2. Reinforced concrete column
3. Reinforced concrete base plate
4. Double layer concrete panel
4.1. Reinforced concrete bearing layer
4.2. Absorbing layer
5. Cement mortar fill
6. Neoprene sealing band
TECHNICAL SPECIFICATION FOR PANELS

- **Standard panel dimensions**
 - 400 cm (length) × 200 cm (height)
 - panel thickness: 18 – 27 cm
 (depending on the absorbing layer area)

- **Reinforced concrete bearing slab**
 - concrete C30/37 XF4, VDP2, XC4, XC3, XC2, XC1, XC0
 - concrete density: 2.400 kg/m³
 - minimum slab thickness: 12 cm
 - maximum slab length: 600 cm

- **Absorbing layer with recycled rubber**
 - porous concrete density: 1.700 kg/m³
 - thickness: 1 – 6 cm
 - thickness: 2 – 13 cm
 - thickness: 3 – 15 cm

- **Danger of falling debris**
 - class 3 – according to HRN EN 1794-2:2011
 - class 5 – according to HRN EN 1794-2:2004

- **Resistance to brushwood fire**
 - class 3 – according to HRN EN 1794-2:2011

ABSORPTIVE PROPERTIES OF PANELS

Desired sound absorption properties can be achieved by varying the thickness and shape of absorbing layer of the noise protection panel. Absorption properties have been tested according to HRN EN ISO 354 and HRN EN 1793-1.

The following sound absorption classes can be achieved by varying the shape of the noise absorbing surface:

<table>
<thead>
<tr>
<th>Profile</th>
<th>Shape of noise absorbing layer</th>
<th>D_Lα [dB]</th>
<th>Sound absorption class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flat</td>
<td>6</td>
<td>A2</td>
</tr>
<tr>
<td>2</td>
<td>Trapezoidal</td>
<td>8,6</td>
<td>A3</td>
</tr>
<tr>
<td>3</td>
<td>Undulating</td>
<td>8,7</td>
<td>A3</td>
</tr>
</tbody>
</table>

Panel insulation properties

Insulation properties were tested according to HRN EN 1794-1. The sound insulation class B3 (DL_R = 47 dB) was obtained.
Production and installation options
FOUNDATIONS

Depending on terrain configuration, foundation soil properties, wind zone, and project requirements, the following types of foundations can be constructed:

- prefabricated foundation blocks with a base and prefabricated base plates

- foundations on bored RC piles with a base and prefabricated base plates

- strip foundations with base blocks, the foundation cap and prefabricated base plates

- reinforced-concrete columns
 - H cross section
 - concrete C30/37 XF4 VDP2 XC4 XC3 XC2 XC1 XC0
 - column height 200 – 600 cm
 - cross section 30 × 30 cm or 30 × 40 cm (depending on column height)
 - surface finish – in colour as selected by architect

- steel columns
 - type HEA or HEB, 120 – 280 mm
 - column height 200 – 400 cm
 - surface finish – sand blasted and varnished in colour as selected by architect

- foundations on bored RC piles with a base and prefabricated base plates

- strip foundations with base blocks, the foundation cap and prefabricated base plates

- double-sided absorbing panel

- single-sided absorbing panel

COLUMNS

• prefabricated foundation blocks with a base and prefabricated base plates

• foundations on bored RC piles with a base and prefabricated base plates

• strip foundations with base blocks, the foundation cap and prefabricated base plates

• reinforced-concrete columns
 - H cross section
 - concrete C30/37 XF4 VDP2 XC4 XC3 XC2 XC1 XC0
 - column height 200 – 600 cm
 - cross section 30 × 30 cm or 30 × 40 cm (depending on column height)
 - surface finish – in colour as selected by architect

• steel columns
 - type HEA or HEB, 120 – 280 mm
 - column height 200 – 400 cm
 - surface finish – sand blasted and varnished in colour as selected by architect

• double-sided absorbing panel

• single-sided absorbing panel
Production process
Mould preparation

Rubber aggregate pretreatment

Absorbing layer concrete mixing

Final surface treatment

Concrete placing and compaction

Bearing layer concrete mixing

Concrete curing

Demoulding

Storing

Transport and installation

RUBBER GRANULE PRODUCTION PLANT

‣ Gumiimpex-GRP, Varaždin, Croatia

CONCRETE ELEMENT PRODUCTION PLANT

‣ Beton Lučko LTD, Jastrebarsko, Croatia
PRODUCT DEVELOPMENT AND DESIGN DOCUMENTATION:
University of Zagreb Faculty of Civil Engineering
Kačićeva 26, 10000 Zagreb, Croatia
tel./fax: +385 1 46-39-245
e-mail: ruconbar@grad.hr
www.ruconbar.com

PRODUCTION:
Beton Lučko d.o.o.
Puškarićeva 1b, 10250 Lučko–Zagreb, Croatia
tel.: +385 1 65-99-700; +385 1 65-30-070
e-mail: info@betonlucko.hr
www.betonlucko.hr
www.ruconbar.com